Chapter 16 Negative binomial GLMM
One option for a distribution where the variance increases more rapidly with the mean is the negative binomial (or Poisson-gamma) distribution. Recall that the negative binomial distribution meets the assumption that the variance is proportional to the square of the mean.
We can model this distribution using the function glmer.nb()
:
# Negative binomial GLMM using the function glmer.nb()
<- glmer.nb(total.fruits ~ nutrient * amd + rack + status +
mnb1 1 | popu) + (1 | gen), data = dat.tf, control = glmerControl(optimizer = "bobyqa"))
(# Control argument specifies the way we optimize the
# parameter values
We test again for over-dispersion:
# Over-dispersion check
overdisp_fun(mnb1)
## chisq ratio p logp
## 721.034461131 1.170510489 0.002143425 -6.145350288
# Ratio is now much closer to 1 although p < 0.05
Ratio is now much closer to 1 although p < 0.05