
Workshop 8: Generalized additive modelsWorkshop 8: Generalized additive models

QCBS R Workshop SeriesQCBS R Workshop Series

Québec Centre for Biodiversity ScienceQuébec Centre for Biodiversity Science

1 / 1091 / 109

About this workshopAbout this workshop
REPO DEV W I K I 08 S L I D E S 08 S L I D E S 08 SCR I P T 08

2 / 1092 / 109

https://github.com/QCBSRworkshops/workshop08
https://wiki.qcbs.ca/r_workshop8
https://qcbsrworkshops.github.io/workshop08/workshop08-en/workshop08-en.html
https://qcbsrworkshops.github.io/workshop08/workshop08-en/workshop08-en.pdf
https://qcbsrworkshops.github.io/workshop08/workshop08-en/workshop08-en.R

Required packages
ggplot2
itsadug
mgcv

install.packages(c('ggplot2', 'itsadug', 'mgcv'))

3 / 109

https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=itsadug
https://cran.r-project.org/package=mgcv

Workshop overview
1. The linear model... and where if fails
2. Introduction to GAM
3. Multiple smooth terms
4. Interactions
5. Changing basis
6. Other distributions
7. Quick intro to GAMM
8. GAM behind the scene

4 / 109

Learning objectives
1. Use the mgcv package to �t non-linear relationships,
2. Understand the output of a GAM to help you understand your data,
3. Use tests to determine if a non-linear model �ts better than a linear one,
4. Include smooth interactions between variables,
5. Understand the idea of a basis function, and why it makes GAMs so powerful,
6. Account for dependence in data (autocorrelation, hierarchical structure)

using GAMMs.

5 / 109

Prerequisites

Some experience in R (enough to be able to run a script and examine
data and R objects) a basic knowledge of regression (you should know
what we mean by linear regression and ANOVA).

6 / 109

1. The linear model1. The linear model

...and where if fails...and where if fails

7 / 1097 / 109

Linear regression
Regression is the workhorse of statistics. It allows us to model a response
variable as a function of predictors plus error.

As we saw in the linear models workshop, regression makes 4 major
assumptions:
1. Normally distributed error
2. Homogeneity of the variance
3. Indenpendance of the errors
4. The response is linear : y = β0 + β1x

9 / 109

http://qcbs.ca/wiki/r_workshop4

Linear regression
There's only one way for the linear model to be right:

10 / 109

Linear regression
And yet so many ways for it to fail:

11 / 109

Linear regression
What's the problem and do we �x it?

A linear model tries to �t the best straight line that passes through the data, so
it doesn't work well for all datasets.

In contrast, a GAM can capture complexe relationships by �tting a non-linear
smooth function through the data, while controlling how wiggly the smooth can
get (more on this later).

12 / 109

2. Introduction to GAM2. Introduction to GAM

13 / 10913 / 109

Generalized Additive Models (GAM)
Let's look at an example. First, we'll generate some data, and plot it.

library(ggplot2)
set.seed(10)
n <- 250
x <- runif(n,0,5)
y_model <- 3*x/(1+2*x)
y_obs <- rnorm(n,y_model,0.1)
data_plot <- qplot(x, y_obs) +
 geom_line(aes(y=y_model)) +
 theme_bw()
data_plot

14 / 109

GAM

15 / 109

GAM
Trying to �t these data as a linear regression model, we would violate the
assumptions listed above.

16 / 109

GAM
In GAM, the relationship between the response variable and the predictors is:

One big advantage of using GAM over a manual speci�cation of the model is
that the optimal shape, i.e. the degree of smoothness of s(x) , is determined
automatically using a generalized cross-validation

y = α + s(x1) + s(x2)+. . . +ϵ

17 / 109

GAM
Let's try to �t the data using a smooth function with the function mgcv::gam()

library(mgcv)
gam_model <- gam(y_obs ~ s(x))
summary(gam_model)

data_plot <- data_plot +
 geom_line(colour = "blue", size = 1.2, aes(y = fitted(gam_model)))
data_plot

18 / 109

GAM

Family: gaussian
Link function: identity

Formula:
y_obs ~ s(x)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.154422 0.006444 179.1 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s(x) 8.317 8.872 171.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.859 Deviance explained = 86.3%
GCV = 0.010784 Scale est. = 0.010382 n = 250

19 / 109

GAM

Note: as opposed to one �xed coef�cient, \beta in linear regression, the smooth
function can continually change over the range of the predictor x

20 / 109

GAM
The mgcv package also includes a default plot to look at the smooths:

plot(gam_model)

21 / 109

Test for linearity using GAM
We can use gam() and anova() to test whether an assumption of linearity is
justi�ed. To do so, we must simply set our smoothed model so that it is nested
in our linear model.

linear_model <- gam(y_obs ~ x) # fit a regular linear model using gam()
nested_gam_model <- gam(y_obs ~ s(x) + x)
anova(linear_model, nested_gam_model, test = "Chisq")
Analysis of Deviance Table

Model 1: y_obs ~ x
Model 2: y_obs ~ s(x) + x
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 248.00 6.5846
2 240.13 2.4988 7.8721 4.0858 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the model y_obs~s(x) gives exactly the same results as y_obs~s(x)+x .
We used the s(x)+x to illustrate the nestedness of the model, but the +x can be
omitted.

22 / 109

Challenge 1
We will now try this comparison test with some new simulated data, just to get a
handle on it.

n <- 250
x_test <- runif(n, -5, 5)
y_test_fit <- 4 * dnorm(x_test)
y_test_obs <- rnorm(n, y_test_fit, 0.2)

1. Fit a linear and smoothed GAM model to the relation between x_test and
y_test_obs .

2. Determine if linearity is justi�ed for this data.
3. What is the estimated degrees of freedom of the smoothed term?

23 / 109

Challenge 1 - Solution
linear_model_test <- gam(y_test_obs ~ x_test)
nested_gam_model_test <- gam(y_test_obs ~ s(x_test) + x_test)

anova(linear_model_test, nested_gam_model_test, test="Chisq")
Analysis of Deviance Table

Model 1: y_test_obs ~ x_test
Model 2: y_test_obs ~ s(x_test) + x_test
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 248.0 78.995
2 240.1 10.420 7.8988 68.574 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

24 / 109

Challenge 1 - Solution
qplot(x_test, y_test_obs) +
 geom_line(aes(y = y_test_fit)) +
 theme_bw()

25 / 109

Challenge 1 - Solution
nested_gam_model_test

Family: gaussian
Link function: identity

Formula:
y_test_obs ~ s(x_test) + x_test

Estimated degrees of freedom:
7.51 total = 9.4

GCV score: 0.04500348 rank: 10/11

Answer Yes non-linearity is justi�ed. The estimated degrees of freedom (edf) are
>> 1 (we'll get back to this soon).

26 / 109

3. Multiple smooth terms3. Multiple smooth terms

27 / 10927 / 109

GAM with multiple variables
GAMs make it easy to include both smooth and linear terms, multiple smoothed
terms, and smoothed interactions.

For this section, we will use simulated data generated using mgcv::gamSim() .

?gamSim
gam_data <- gamSim(eg = 5)
Additive model + factor
head(gam_data)
y x0 x1 x2 x3
1 4.723147 1 0.02573032 0.70706571 0.69248543
2 8.886671 2 0.83272144 0.84997218 0.88974095
3 11.196905 3 0.66302652 0.88025265 0.08469529
4 10.886068 4 0.11126873 0.80087554 0.15109792
5 12.270534 1 0.87969756 0.37692184 0.51467778
6 9.020910 2 0.12441532 0.05154493 0.86526950

We will try to model the response y using the predictors x0 to x3 .

28 / 109

GAM with multiple variables
Let's start with a basic model, with one smoothed term (x1) and one categorical
predictor (x0, which has 4 levels).

basic_model <- gam(y ~ x0 + s(x1), data = gam_data)
basic_summary <- summary(basic_model)
basic_summary$p.table
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.550030 0.3655849 23.387258 1.717989e-76
x02 2.418682 0.5165515 4.682364 3.908046e-06
x03 4.486193 0.5156501 8.700072 9.124666e-17
x04 6.528518 0.5204234 12.544629 1.322632e-30

basic_summary$s.table
edf Ref.df F p-value
s(x1) 1.923913 2.406719 42.43242 1.338683e-19

The p.table provides the signi�cance table for each linear term

The s.table provides the signi�cance table for each smoothed term.

29 / 109

Note on estimated degrees of freedom
basic_summary$s.table
edf Ref.df F p-value
s(x1) 1.923913 2.406719 42.43242 1.338683e-19

The edf shown in the s.table is the estimated degrees of freedom – essentially,
a larger edf value implies more complex wiggly splines.

A value close to 1 tend to be close to a linear term.

A high value (8–10 or higher) means that the spline is highly non-linear.

In our basic model the edf of smooth function s(x1) is ~2, which
suggests a non-linear curve.

30 / 109

Note on estimated degrees of freedom
The edf in GAM is different from the degrees of freedom in a linear regression.

In linear regression, the model degrees of freedom is equivalent to the number
of non-redundant free parameters, p, in the model (and the residual degrees of
freedom are given by n-p).

We will revisit the edf later in this workshop.

31 / 109

GAM with multiple variables
plot(basic_model)

32 / 109

GAM with multiple variables
We can add a second term, x2 , but specify a linear relationship with y

two_term_model <- gam(y ~ x0 + s(x1) + x2, data = gam_data)
two_term_summary <- summary(two_term_model)
two_term_summary$p.table
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.400658 0.4177614 27.289879 9.396207e-93
x02 2.314405 0.4552138 5.084216 5.723467e-07
x03 4.487653 0.4543299 9.877520 1.063008e-20
x04 6.596149 0.4585778 14.383925 5.468771e-38
x2 -5.825948 0.5436671 -10.716021 1.114046e-23

two_term_summary$s.table
edf Ref.df F p-value
s(x1) 1.900864 2.377544 49.85908 2.287393e-22

33 / 109

GAM with multiple variables
We can add a second term, x2 , but specify a linear relationship with y

plot(two_term_model)

34 / 109

GAM with multiple variables
We can also explore whether the relationship between y and x2 is non-linear

two_smooth_model <- gam(y ~ x0 + s(x1) + s(x2), data = gam_data)
two_smooth_summary <- summary(two_smooth_model)
two_smooth_summary$p.table
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.937862 0.2217506 40.305927 2.373755e-140
x02 2.008045 0.3137690 6.399756 4.518133e-10
x03 3.832496 0.3143049 12.193562 3.758930e-29
x04 6.041521 0.3145299 19.208098 3.520507e-58

two_smooth_summary$s.table
edf Ref.df F p-value
s(x1) 2.546757 3.175726 68.10051 9.199287e-40
s(x2) 7.726989 8.582003 81.55441 2.326028e-120

35 / 109

GAM with multiple variables
We can also explore whether the relationship between y and x2 is non-linear

plot(two_smooth_model, page = 1)

36 / 109

GAM with multiple variables
As before, we can perform an ANOVA to test if the smoothed term is necessary

anova(basic_model, two_term_model, two_smooth_model, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ x0 + s(x1)
Model 2: y ~ x0 + s(x1) + x2
Model 3: y ~ x0 + s(x1) + s(x2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 393.59 5231.6
2 392.62 4051.3 0.97082 1180.2 < 2.2e-16 ***
3 384.24 1839.5 8.38019 2211.8 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The best �t model is the model with both smooth terms for x1 and x2

37 / 109

Challenge 2

1. Create 2 new models, with x3 as a linear and smoothed term.
2. Determine if x3 is an important term to include using plots, coef�cient tables

and the anova function.

38 / 109

Challenge 2 - Solution

three_term_model <- gam(y ~ x0 + s(x1) + s(x2) + x3, data = gam_data)
three_smooth_model <- gam(y~x0 + s(x1) + s(x2) + s(x3), data = gam_data)
three_smooth_summary <- summary(three_smooth_model)

39 / 109

Challenge 2 - Solution
plot(three_smooth_model, page = 1)

40 / 109

Challenge 2 - Solution
three_smooth_summary$s.table
edf Ref.df F p-value
s(x1) 2.542296 3.170441 67.75922314 1.577435e-39
s(x2) 7.731424 8.584355 80.90188472 2.006819e-119
s(x3) 1.000000 1.000000 0.02039697 8.865087e-01

edf = 1 therefore term is linear.

anova(two_smooth_model, three_term_model, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ x0 + s(x1) + s(x2)
Model 2: y ~ x0 + s(x1) + s(x2) + x3
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 384.24 1839.5
2 383.25 1839.3 0.99707 0.18818 0.8418

term x3 is not significant, it should be dropped!

41 / 109

4. Interactions4. Interactions

42 / 10942 / 109

GAM with interaction terms
There are 2 ways to include interactions between variables:

for 2 smoothed variables : s(x1, x2)
for one smoothed variable and one linear variable (either factor or
continuous): use the by argument s(x1, by = x2)

When x2 is a factor, you have a smooth term that vary between
different levels of x2
When x2 is continuous, the linear effect of x2 varies smoothly with x1
When x2 is a factor, the factor needs to be added as a main effect in
the model

43 / 109

GAM with interaction terms
We will examine interaction effect using our categorical variable x0 and ask
whether the non-linear smoother s(x2) varies across different levels of x0 .

factor_interact <- gam(y ~ x0 + s(x1) + s(x2, by = x0), data = gam_data)

summary(factor_interact)$s.table
edf Ref.df F p-value
s(x1) 2.401350 2.996664 67.18567 6.863193e-38
s(x2):x01 6.606775 7.708292 21.40363 3.077275e-27
s(x2):x02 6.436261 7.571201 19.96801 4.916484e-25
s(x2):x03 5.467172 6.618716 28.75426 2.871338e-32
s(x2):x04 6.422564 7.574388 26.43680 2.075813e-33

44 / 109

GAM with interaction terms
plot(factor_interact, page = 1)

45 / 109

GAM with interaction terms
We can also visualise our model in 3D using vis.gam , where theta is the degree
rotation on the x-y plane

vis.gam(factor_interact, view = c("x2","x0"), theta = 40, n.grid = 500, border = NA)

46 / 109

GAM with interaction terms
Let's perform a model comparison using ANOVA to determine if the interaction
term is necessary

anova(two_smooth_model, factor_interact, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ x0 + s(x1) + s(x2)
Model 2: y ~ x0 + s(x1) + s(x2, by = x0)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 384.24 1839.5
2 363.53 1740.9 20.712 98.608 0.4482

From the plots, we saw that the shape of the smooth terms were comparable
among the 4 levels of x0 . The anova test con�rms this as well (p > 0.05).

47 / 109

GAM with interaction terms
Finally we'll look at the interactions between 2 smoothed terms, x1 and x2 .

smooth_interact <- gam(y~x0 + s(x1, x2), data = gam_data)
summary(smooth_interact)$s.table
edf Ref.df F p-value
s(x1,x2) 25.91803 28.42892 36.40735 8.635007e-165

48 / 109

GAM with interaction terms
plot(smooth_interact, page = 1, scheme = 3)

49 / 109

GAM with interaction terms
vis.gam(smooth_interact, view = c("x1", "x2"), theta=40, n.grid = 500, border = NA)

50 / 109

GAM with interaction terms
anova(two_smooth_model, smooth_interact, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ x0 + s(x1) + s(x2)
Model 2: y ~ x0 + s(x1, x2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 384.24 1839.5
2 367.57 1710.3 16.671 129.2 0.04063 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction between s(x1) and s(x2) is signi�cant and the 2D plot nicely
illustrates this non-linear interactions, where y is large at high values of x1 but
low to mid-values of x2 .

51 / 109

5. Changing basis5. Changing basis

52 / 10952 / 109

Expanding on the basic GAM
It is possible to expand further on the basic GAM model with:
1. more complicated smooths, by changing the basis,
2. other distributions: anything you can do with a GLM using the family

argument,
3. mixed effect models, using gamm or the gamm4 package.

We will now go over this 3 expansions.

53 / 109

Other smooth functions
To model a non-linear smooth variable or surface, 3 different smooth functions
are available:

s() for modeling a 1-dimensional smooth or for modeling interactions among
variables measured using the same unit and the same scale

te() for modeling 2- or n-dimensional interaction surfaces of variables that
are not on the same scale. Includes main effects.

ti() for modeling 2- or n-dimensional interaction surfaces that do not
include the main effects.

54 / 109

Parameters of smooth functions
The smooth functions have several parameters that can be set to change their
behavior. The most often-used parameters are :

k number of ‘knots’

determines the upper bound of the number of base functions used to build
the curve.
constrains the wigglyness of a smooth.
the number of base functions is re�ected in the edf value.
the default k for s() is ~9, and for te() and ti() is 5 per dimension.
k should be < the number of unique data points.

55 / 109

Parameters of smooth functions
The smooth functions have several parameters that can be set to change their
behavior. The most often-used parameters are :

d speci�es that predictors in the interaction are on the same scale or
dimension (only used in te() and ti()).

For example, in te(Time, width, height, d=c(1,2)) , indicates that width and
height are one the same scale, but not Time .

bs speci�es the type of underlying base functions.

the default for s() is tp (thin plate regression spline) and for te() and ti()
is cr (cubic regression spline).

56 / 109

Example smooth for cyclical data
Cyclical data is a good example where changing basis is useful: you want the
predictor to match at the ends.

Let's use a time series of climate data, with monthly measurements, and see if
there's a temporal trend in yearly temperature.

data(nottem) # Nottingham temperature time series
n_years <- length(nottem)/12
nottem_month <- rep(1:12, times = n_years)
nottem_year <- rep(1920:(1920 + n_years - 1), each = 12)
qplot(nottem_month, nottem, colour = factor(nottem_year), geom = "line") +
 theme_bw()

57 / 109

Example smooth for cyclical data

58 / 109

Example smooth for cyclical data
We can model both the cyclic change of temperature across months and the
non-linear trend through years, using a cyclical cubic spline, or cc , for the
month variable and a regular smooth for the year variable.

year_gam <- gam(nottem ~ s(nottem_year) + s(nottem_month, bs = "cc"))
summary(year_gam)$s.table
edf Ref.df F p-value
s(nottem_year) 2.333879 2.906998 2.528043 0.07266502
s(nottem_month) 4.923943 8.000000 390.029032 0.00000000

59 / 109

Example smooth for cyclical data
plot(year_gam, page = 1, scale = 0)

There is about 1-1.5 degree rise in temperature over the period, but within a
given year there is about 20 degrees variation in temperature, on average. The
actual data vary around these values and that is the unexplained variance.

60 / 109

6. Other distributions6. Other distributions

61 / 10961 / 109

GAM using other distributions
Let's now take a look on how to use GAMs when the response variable does not
follow a normal distributions and is either count or proportion data (e.g.,
Gamma, binomial, Poisson, negative binomial).

We will use an example dataset where a binomial distribution is needed; the
response variable represents the number of successes vs failures over the
course of an experiment.

gam_data3 <- read.csv("data/other_dist.csv")
str(gam_data3)
'data.frame': 514 obs. of 4 variables:
$ prop : num 1 1 1 1 0 1 1 1 1 1 ...
$ total: int 4 20 20 18 18 18 20 20 20 20 ...
$ x1 : int 550 650 750 850 950 650 750 850 950 550 ...
$ fac : chr "f1" "f1" "f1" "f1" ...

62 / 109

GAM using other distributions
plot(range(gam_data3$x1), c(0,1), type = "n",
 main = "Probability of successes over time",
 ylab = "Probability", xlab = "x1 (time)")
abline(h = 0.5)

avg <- aggregate(prop ~ x1, data=gam_data3, mean)
lines(avg$x1, avg$prop, col = "orange", lwd = 2)

63 / 109

GAM using other distributions
We will test if this trend is linear or not using a logistic GAM (we use a binomial
family distribution given that our response is proportion data).

What does the intercept represent in this model?

What does the smooth term indicate?

prop_model <- gam(prop ~ s(x1), data = gam_data3, weights = total, family = "binomia
prop_summary <- summary(prop_model)
prop_summary$p.table
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.173978 0.02709613 43.32641 0
prop_summary$s.table
edf Ref.df Chi.sq p-value
s(x1) 4.591542 5.615235 798.9407 1.677701e-164

64 / 109

GAM using other distributions
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.173978 0.02709613 43.32641 0

What does the intercept represent in this model?

Recall that the model uses the count data to calculate the logit, which is the log
odds ratio between successes and failures:

If successes = failures, the ratio = 1 and the logit is 0 (log(1) = 0).
If successes > failures, the ratio > 1 and the logit has a positive value (log(2) =
0.69).
If successes < failures, the ratio < 1 and the logit has a negative value (log(.5)
= -0.69).

Here, the estimated intercept coef�cient is positive, which means that
there are more successes than failures overall.

66 / 109

GAM using other distributions
edf Ref.df Chi.sq p-value
s(x1) 4.591542 5.615235 798.9407 1.677701e-164

What does the smooth term indicate?

This represents how the log odds of successes vs failures changes over time (x1).

As the edf > 1, the proportion of successes increases faster over time

68 / 109

Visualizing the trend over time
There are different ways this relationship can be represented graphically:

partial effects are the isolated effects of one particular predictor or
interaction. If you visualize your GAM model with plot() , you get the partial
effects.
summed effects are the predicted response measures for a given value or
level of predictors. If you visualize your GAM model with
itsadug::plot_smooth() , you get the summed effects.

69 / 109

Contribution / partial effect

Over time the log odds increases,
so over time successes increase
and failures decrease.

Fitted values, summed effect,
intercept included

Equal amounts of successes and
failures up to x1=400.

Visualizing the trend over time
What do these plots tell us about successes vs failures?

70 / 109

Visualizing the trend over time
Lastly, to help interpret the results, we could transform the summed effects back
to proportions with the function itsadug::plot_smooth() :

plot_smooth(prop_model, view = "x1", main = "",
 transform = plogis, ylim = c(0,1), print.summary = F)
abline(h = 0.5, v = diff$start, col = 'red', lty = 2)

As in the logit plot, the proportion of successes increases above 0.5 at x1=400.

71 / 109

7. Quick intro to GAMM7. Quick intro to GAMM

72 / 10972 / 109

Dealing with non-independence
When observations are not independent, GAMs can be used to either
incorporate:

a serial correlation structure to model residual autocorrelation
(autoregressive AR, moving average MA, or a combination of the two ARMA),
random effects that model independence among observations from the
same site.

73 / 109

Model with correlated errors
Let's have a look at a model with temporal autocorrelation in the residuals. We
will revisit the Nottingham temperature model and test for correlated errors
using the (partial) autocorrelation function.

par(mfrow = c(1,2))
acf(resid(year_gam), lag.max = 36, main = "ACF")
pacf(resid(year_gam), lag.max = 36, main = "pACF")

74 / 109

Model with correlated errors

ACF (and pACF) provide the cross correlation (and partial correlation) of a time
series with itself at different time lags, and are used to identify after how many
time steps observations start to be independent.

The ACF plot of our model residuals suggests a signi�cant lag of 1, and perhaps
a lag of 2. Therefore, a low-order AR model is likely needed.

75 / 109

Model with correlated errors
We can test for autocorrelation by adding AR structures to the model: AR(1)
(correlation at 1 time step) and AR(2) (correlation at 2 time steps).

year_gam <- gamm(nottem ~ s(nottem_year) + s(nottem_month, bs = "cc"))
year_gam_AR1 <- gamm(nottem ~ s(nottem_year) + s(nottem_month, bs = "cc"),
 correlation = corARMA(form = ~ 1|nottem_year, p = 1),
 data = data.frame(nottem, nottem_year, nottem_month))
year_gam_AR2 <- gamm(nottem ~ s(nottem_year) + s(nottem_month, bs = "cc"),
 correlation = corARMA(form = ~ 1|nottem_year, p = 2),
 data = data.frame(nottem, nottem_year, nottem_month))
anova(year_gam$lme, year_gam_AR1$lme, year_gam_AR2$lme)
Model df AIC BIC logLik Test L.Ratio p-value
year_gam$lme 1 5 1109.908 1127.311 -549.9538
year_gam_AR1$lme 2 6 1101.218 1122.102 -544.6092 1 vs 2 10.68921 0.0011
year_gam_AR2$lme 3 7 1101.598 1125.962 -543.7988 2 vs 3 1.62082 0.2030

AR(1) provides a signi�cant increase in �t over the naive model (LRT = 10.69, p =
0.0011), but little improvement with AR(2) (LRT = 1.62, p = 0.203).

76 / 109

Mixed modelling
As we saw in the section changing basis, bs speci�es the type of underlying base
function. For random intercepts and linear random slopes we use bs = "re" , but
for random smooths we use bs = "fs" .

3 different types of random effects in GAMMs (fac factor coding for the
random effect; x0 continuous �xed effect):

random intercepts adjust the height of other model terms with a constant
value: s(fac, bs="re")
random slopes adjust the slope of the trend of a numeric predictor: s(fac,
x0, bs="re")

random smooths adjust the trend of a numeric predictor in a nonlinear way:
s(x0, fac, bs="fs", m=1) , where the argument m=1 sets a heavier penalty
for the smooth moving away from 0, causing shrinkage to the mean.

78 / 109

GAMM with a random intercept
As before, we will use the gamSim() function to generate a dataset, here with a
random effect, then run a model with a random intercept using fac as the
random factor.

gam_data2 <- gamSim(eg = 6)
4 term additive + random effectGu & Wahba 4 term additive model
str(gam_data2)
'data.frame': 400 obs. of 11 variables:
$ y : num 8.72 10.75 15.3 16.79 11.55 ...
$ x0 : num 0.277 0.698 0.379 0.869 0.568 ...
$ x1 : num 0.407 0.3657 0.235 0.4764 0.0666 ...
$ x2 : num 0.9221 0.0491 0.0245 0.9052 0.6511 ...
$ x3 : num 0.0254 0.6572 0.2899 0.0727 0.8257 ...
$ f : num 6.8 10.42 12.57 15.44 9.39 ...
$ f0 : num 1.528 1.625 1.857 0.799 1.955 ...
$ f1 : num 2.26 2.08 1.6 2.59 1.14 ...
$ f2 : num 0.0183 0.716 0.1143 0.0486 3.2902 ...
$ f3 : num 0 0 0 0 0 0 0 0 0 0 ...
$ fac: Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...

79 / 109

GAMM with a random intercept
gamm_intercept <- gam(y ~ s(x0) + s(fac, bs = "re"), data = gam_data2)
summary(gamm_intercept)$s.table
edf Ref.df F p-value
s(x0) 3.044725 3.776643 2.481658 3.774254e-02
s(fac) 2.960269 3.000000 95.146996 2.696335e-54
plot(gamm_intercept, select = 2)

80 / 109

GAMM with a random intercept
We can plot the summed effects for the x0 without random effects, and then
plot the predictions of all 4 levels of the random fac effect:

par(mfrow = c(1,2), cex = 1.1)

plot_smooth(gamm_intercept, view = "x0", rm.ranef = T,
 main = "intercept + s(x1)")

plot_smooth(gamm_intercept, view = "x0", cond = list(fac="1"),
 main = "... + s(fac)", col = 'orange', ylim = c(8,21))

plot_smooth(gamm_intercept, view = "x0", cond = list(fac = "2"), add = T, col = 'red

plot_smooth(gamm_intercept, view="x0", cond = list(fac = "3"), add = T, col = 'purpl

plot_smooth(gamm_intercept, view="x0", cond = list(fac = "4"), add = T, col = 'turqu

81 / 109

 fac1 fac2 fac3 fac4

GAMM with a random intercept

82 / 109

GAMM with a random slope
gamm_slope <- gam(y ~ s(x0) + s(x0, fac, bs = "re"), data = gam_data2)

summary(gamm_slope)$s.table
edf Ref.df F p-value
s(x0) 2.961019 3.673378 1.444919 1.804908e-01
s(x0,fac) 2.946695 3.000000 72.392941 7.346091e-42

83 / 109

GAMM with a random slope
par(mfrow = c(1,2), cex = 1.1)

plot_smooth(gamm_slope, view = "x0", rm.ranef = TRUE, main = "intercept + s(x0)")

plot_smooth(gamm_slope, view = "x0", cond = list(fac = "1"),
 main = "... + s(fac)", col = 'orange', ylim = c(7,22))

plot_smooth(gamm_slope, view = "x0", cond = list(fac = "2"), add = T, col = 'red')

plot_smooth(gamm_slope, view = "x0", cond = list(fac = "3"), add = T, col = 'purple'

plot_smooth(gamm_slope, view = "x0", cond = list(fac = "4"), add = T, col = 'turquoi

84 / 109

GAMM with a random slope

85 / 109

GAMM with a random intercept and slope
gamm_int_slope <- gam(y ~ s(x0) + s(fac, bs = "re") + s(fac, x0, bs = "re"),
 data = gam_data2)

summary(gamm_int_slope)$s.table
edf Ref.df F p-value
s(x0) 3.0121856 3.735986 2.399772 4.299127e-02
s(fac) 2.8151182 3.000000 154.712380 7.093989e-31
s(fac,x0) 0.7259132 3.000000 9.273901 7.964598e-02

86 / 109

GAMM with a random intercept and slope
par(mfrow = c(1,2), cex = 1.1)

plot_smooth(gamm_int_slope, view = "x0", rm.ranef = T, main = "intercept + s(x0)")

plot_smooth(gamm_int_slope, view = "x0", cond = list(fac = "1"),
 main="... + s(fac) + s(fac, x0)", col = 'orange', ylim = c(7,22))

plot_smooth(gamm_int_slope, view = "x0", cond = list(fac = "2"), add = T, col='red')

plot_smooth(gamm_int_slope, view = "x0", cond = list(fac = "3"), add = T, col = 'pur

plot_smooth(gamm_int_slope, view = "x0", cond = list(fac = "4"), add = T, col = 'tur

87 / 109

GAMM with a random intercept and slope

88 / 109

GAMM with a random intercept and slope
Note that the random slope is static in this case:

plot(gamm_int_slope, select = 3)

89 / 109

GAMM with a random smooth
gamm_smooth <- gam(y ~ s(x0, fac, bs = "fs", m = 1), data = gam_data2)

summary(gamm_smooth)$s.table
edf Ref.df F p-value
s(x0,fac) 4.814005 35 8.122226 4.077091e-57

90 / 109

GAMM with a random smooth
Here, if the random slope varied along x0 , we would see different curves for
each level:

plot(gamm_smooth, select = 1)

91 / 109

GAMM with a random smooth
par(mfrow = c(1,2), cex = 1.1)

plot_smooth(gamm_smooth, view = "x0", rm.ranef = T, main = "intercept + s(x0)")

plot_smooth(gamm_smooth, view = "x0", cond = list(fac = "1"),
 main="... + s(x0, fac)", col = 'orange', ylim = c(7,22))

plot_smooth(gamm_smooth, view = "x0", cond = list(fac = "2"), add = T, col='red')

plot_smooth(gamm_smooth, view = "x0", cond = list(fac = "3"), add = T, col = 'purple

plot_smooth(gamm_smooth, view = "x0", cond = list(fac = "4"), add = T, col = 'turquo

92 / 109

GAMM with a random smooth

Here, if the random slope varied along x0 , we would see different curves for each
level.

93 / 109

GAMM
All of the mixed models from this section can be compared using anova() to
determine the best �t model

anova(gamm_intercept, gamm_slope, gamm_int_slope, gamm_smooth, test = "Chisq")
Analysis of Deviance Table

Model 1: y ~ s(x0) + s(fac, bs = "re")
Model 2: y ~ s(x0) + s(x0, fac, bs = "re")
Model 3: y ~ s(x0) + s(fac, bs = "re") + s(fac, x0, bs = "re")
Model 4: y ~ s(x0, fac, bs = "fs", m = 1)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 392.22 6554.0
2 392.33 7290.6 -0.10372 -736.60 6.687e-13 ***
3 391.11 6532.7 1.21687 757.94 2.551e-11 ***
4 392.64 6690.5 -1.52776 -157.89 0.004796 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

94 / 109

8. GAM behind the scene8. GAM behind the scene

95 / 10995 / 109

A closer look at GAM
We will now take a few minutes to look at what GAMs are doing behind the
scenes. Lets �rst consider a model containing one smooth function of one
covariate, :

To estimate the smooth function , we need to represented the above equation
in such a way that it becomes a linear model. This can be done by choosing a
basis, , de�ning the space of functions of which is an element:

xi

yi = f(xi) + εi

f

bi(x) f

f(x) =
q

∑
i=1

bi(x) × βi

96 / 109

Example: a polynomial basis
Suppose that is believed to be a 4th order polynomial, so that the space of
polynomials of order 4 and below contains . A basis for this space would then
be:

so that becomes:

and the full model now becomes:

f

f

b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3, b5(x) = x4

f(x)

f(x) = β1 + xiβ2 + x2
iβ3 + x3

iβ4(x) + x4
iβ5

yi = β1 + xiβ2 + x2
i
β3 + x3

i
β4(x) + x4

i
β5 + εi

97 / 109

Example: a polynomial basis
The basis functions are each multiplied by a real valued parameter, , and are
then summed to give the �nal curve .

By varying the we can vary the form of to produce any polynomial
function of order 4 or lower.

βi
f(x)

βi f(x)

98 / 109

Example: a cubic spline basis
A cubic spline is a curve constructed from sections of a cubic polynomial joined
together so that they are continuous in value. Each section of cubic has different
coef�cients.

99 / 109

Example: a cubic spline basis
Here's a representation of a smooth function using a rank 5 cubic spline basis
with knot locations at increments of 0.2:

Here, the knots are evenly spaced through the range of observed x values.
However, the choice of the degree of model smoothness is controlled by the the
number of knots, which was arbitrary.

Is there a better way to select the knot locations?

100 / 109

Controlling the degree of smoothing with
penalized regression splines
Instead of controlling smoothness by altering the number of knots, we keep that
�xed to size a little larger than reasonably necessary, and control the model’s
smoothness by adding a “wiggleness” penalty.

So, rather than �tting the model by minimizing (as with least squares regression):

it can be �t by minimizing:

As goes to infty, the model becomes linear.

||y − XB||2

||y − XB||2 + λ ∫
1

0

[f
′′

(x)]2dx

λ

101 / 109

Controlling the degree of smoothing with
penalized regression splines
If is too high then the data will be over smoothed, and if it is too low then the
data will be under smoothed.

Ideally, it would be good to choose so that the predicted is as close as
possible to . A suitable criterion might be to choose to minimize:

Since is unknown, is estimated using a generalized cross validation
technique that leaves out each datum from the data in turn and considers the
average ability of models �tted to the remaining data to predict the left out
datum.

λ

λ f̂

f λ

M = 1/n ×
n

∑
i=1

(f̂i − fi)
2

f M

102 / 109

Principle behind cross validation

1. �ts many of the data poorly and does no better with the missing point.

2. �ts the underlying signal quite well, smoothing through the noise and the
missing datum is reasonably well predicted.

3. �ts the noise as well as the signal and the extra variability induced
causes it to predict the missing datum rather poorly.

105 / 109

Principle behind cross validation

106 / 109

Brief note on estimated degrees of freedom (edf)
How many degrees of freedom does a �tted GAM have?

Instead of providing the output of the cross-validation in terms of (model
complexity), the GAM function in the mgcv package uses a term called the
estimated degrees of freedom (edf)

Because the number of free parameters in GAMs is dif�cult to de�ne, the edf are
related to , such that the greater the penalty, the smaller the edf.

For example, if the arbitrarily large number of knots is k = 10, then k-1 sets the
upper limit on the edf associated with a smooth term. This number then
decreases as the penalty increases until the best �t penalty is found by cross-
validation.

λ

λ

λ

107 / 109

Ressources
There's a great deal more out there on GAM… this was just the very surface.

Simon Wood, the author of the mgcv package has a very useful website with
introductory talks and notes on how to use GAM.

He's also written a book, Generalized Additive Models: An Introduction with R,
which we used as reference for this workshop.

Material from this workshop were also obtained from the following fantastic
blogs and tutorials:

From the bottom of the heap

Overview GAMM analysis of time series data

Advanced Analysis of Time series data

Finally, the help pages, available through ?gam in R, are an excellent resource.

108 / 109

http://people.bath.ac.uk/sw283/mgcv/
http://www.fromthebottomoftheheap.net/blog/
http://www.sfs.uni-tuebingen.de/~jvanrij/Tutorial/GAMM.html
http://www.sfs.uni-tuebingen.de/~jvanrij/LSA2015/AnswersLab2.html

Thank you for attending this workshop!Thank you for attending this workshop!

109 / 109109 / 109

